MIKROBIOLOGIK TEKSHIRUVLAR NA TIJALARINI TALQIN QILISHDA SUN’IY INTEL LEKTNING ROLI
General information about the article
Hozirgi paytda zamonaviy mikrobiologiya raqamli transformatsiya bosqichini boshdan kechirmoqda, ushbu transformatsiya asosini sun’iy intellekt (SI) texnologiyalari tashkil etadi. Mashinali hamda chuqur o‘rganish usullarini qo‘llash mikrobiologik ma’lumotlarni - tasvirlar va spektrlardan tortib, to genom ketma-ketliklar va metagenom profillargacha bo‘lgan ma’lumotlar interpretatsiyasini avtomatlashtirish imkonini beradi. Maqolada mikrobiologik tadqiqotlarda sun’iy intellektdan foydalanishning asosiy yo‘nalishlari: mikroorganizmlarni aniqlash, mikroblarga qarshi chidamlilikni bashorat qilish, metagenom ma’lumotlarni tahlil qilish va multiom axborot manbalarini integratsiyalash ko‘rib chiqilgan. Ma’lumotlar sifati, modellarni talqin qilish, axloqiy va me’yoriy jihatlarga alohida e’tibor qaratilgan. Klinik mikrobiologiyaga sun’iy intellektni muvaffaqiyatli joriy etish ma’lumotlarni standartlashtirish, algoritmlarning shaffofligi va natijalarning ko‘p markazli tasdiqlashni talab qilishi ko‘rsatilgan.
1.Mortier T. et al. Bacterial identification using MALDI-TOF and ML // Frontiers in Microbiology. – 2021.
2. 2.Khalaf W.S. et al. Artificial intelligence in clinical microbiology: recent advances // Microorganisms. – 2025.
3. 3.Park H. et al. Machine learning for microbial classification // Applied Microbiology and Biotechnology. – 2023. 4. de la Lastra J.M.P. et al. Data-driven approaches in AMR prediction // Biosensors. – 2024. 5.
4.Kim J.I. et al. Machine learning for antimicrobial resistance prediction // Frontiers in Cellular and Infection Microbiology. – 2022. 6.
5.Valavarasu S. et al. Deep learning models for pathogen detection // Nature Scientific Reports. – 2025. 7.
6.Roy G. et al. Deep learning in metagenomic analysis // Computational Biology Journal. – 2024. 8.
7.Kutuzova S. et al. Improving taxonomic classification of metagenomic contigs // Nature Communications. – 2024. 9.
8.Jain A. et al. Explainable ML pipeline for AMR prediction // Bioinformatics Advances. – 2025.
, X. . (2026). MIKROBIOLOGIK TEKSHIRUVLAR NA TIJALARINI TALQIN QILISHDA SUN’IY INTEL LEKTNING ROLI. ALFRAGANUS, 6(4), 229–233. https://doi.org/
, Xujaeva Sh.A.. “MIKROBIOLOGIK TEKSHIRUVLAR NA TIJALARINI TALQIN QILISHDA SUN’IY INTEL LEKTNING ROLI.” Academic Research in Educational Sciences, vol. 4, no. 6, 2026, pp. 229–233, https://doi.org/.
, . 2026. MIKROBIOLOGIK TEKSHIRUVLAR NA TIJALARINI TALQIN QILISHDA SUN’IY INTEL LEKTNING ROLI. Academic Research in Educational Sciences. 4(6), pp.229–233.
English
Русский
O'zbek